ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.08855
19
15

Effective Attention Sheds Light On Interpretability

18 May 2021
Kaiser Sun
Ana Marasović
    MILM
ArXivPDFHTML
Abstract

An attention matrix of a transformer self-attention sublayer can provably be decomposed into two components and only one of them (effective attention) contributes to the model output. This leads us to ask whether visualizing effective attention gives different conclusions than interpretation of standard attention. Using a subset of the GLUE tasks and BERT, we carry out an analysis to compare the two attention matrices, and show that their interpretations differ. Effective attention is less associated with the features related to the language modeling pretraining such as the separator token, and it has more potential to illustrate linguistic features captured by the model for solving the end-task. Given the found differences, we recommend using effective attention for studying a transformer's behavior since it is more pertinent to the model output by design.

View on arXiv
Comments on this paper