ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.09109
11
15

An Orthogonal Classifier for Improving the Adversarial Robustness of Neural Networks

19 May 2021
Cong Xu
Xiang Li
Min Yang
    AAML
ArXivPDFHTML
Abstract

Neural networks are susceptible to artificially designed adversarial perturbations. Recent efforts have shown that imposing certain modifications on classification layer can improve the robustness of the neural networks. In this paper, we explicitly construct a dense orthogonal weight matrix whose entries have the same magnitude, thereby leading to a novel robust classifier. The proposed classifier avoids the undesired structural redundancy issue in previous work. Applying this classifier in standard training on clean data is sufficient to ensure the high accuracy and good robustness of the model. Moreover, when extra adversarial samples are used, better robustness can be further obtained with the help of a special worst-case loss. Experimental results show that our method is efficient and competitive to many state-of-the-art defensive approaches. Our code is available at \url{https://github.com/MTandHJ/roboc}.

View on arXiv
Comments on this paper