ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.13059
13
12

Efficient and Generalizable Tuning Strategies for Stochastic Gradient MCMC

27 May 2021
Jeremie Coullon
Leah F. South
Christopher Nemeth
ArXivPDFHTML
Abstract

Stochastic gradient Markov chain Monte Carlo (SGMCMC) is a popular class of algorithms for scalable Bayesian inference. However, these algorithms include hyperparameters such as step size or batch size that influence the accuracy of estimators based on the obtained posterior samples. As a result, these hyperparameters must be tuned by the practitioner and currently no principled and automated way to tune them exists. Standard MCMC tuning methods based on acceptance rates cannot be used for SGMCMC, thus requiring alternative tools and diagnostics. We propose a novel bandit-based algorithm that tunes the SGMCMC hyperparameters by minimizing the Stein discrepancy between the true posterior and its Monte Carlo approximation. We provide theoretical results supporting this approach and assess various Stein-based discrepancies. We support our results with experiments on both simulated and real datasets, and find that this method is practical for a wide range of applications.

View on arXiv
Comments on this paper