ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.13479
14
2

Leveraging Linguistic Coordination in Reranking N-Best Candidates For End-to-End Response Selection Using BERT

27 May 2021
Mingzhi Yu
Diane Litman
ArXivPDFHTML
Abstract

Retrieval-based dialogue systems select the best response from many candidates. Although many state-of-the-art models have shown promising performance in dialogue response selection tasks, there is still quite a gap between R@1 and R@10 performance. To address this, we propose to leverage linguistic coordination (a phenomenon that individuals tend to develop similar linguistic behaviors in conversation) to rerank the N-best candidates produced by BERT, a state-of-the-art pre-trained language model. Our results show an improvement in R@1 compared to BERT baselines, demonstrating the utility of repairing machine-generated outputs by leveraging a linguistic theory.

View on arXiv
Comments on this paper