ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.13480
18
6

Efficient distributed algorithms for Convolutional Neural Networks

27 May 2021
Rui Li
Yufan Xu
Aravind Sukumaran-Rajam
A. Rountev
P. Sadayappan
ArXivPDFHTML
Abstract

Several efficient distributed algorithms have been developed for matrix-matrix multiplication: the 3D algorithm, the 2D SUMMA algorithm, and the 2.5D algorithm. Each of these algorithms was independently conceived and they trade-off memory needed per node and the inter-node data communication volume. The convolutional neural network (CNN) computation may be viewed as a generalization of matrix-multiplication combined with neighborhood stencil computations. We develop communication-efficient distributed-memory algorithms for CNNs that are analogous to the 2D/2.5D/3D algorithms for matrix-matrix multiplication.

View on arXiv
Comments on this paper