ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.13566
76
2

Pseudo-marginal Inference for CTMCs on Infinite Spaces via Monotonic Likelihood Approximations

28 May 2021
Miguel Biron-Lattes
Alexandre Bouchard-Coté
Trevor Campbell
ArXivPDFHTML
Abstract

Bayesian inference for Continuous-Time Markov Chains (CTMCs) on countably infinite spaces is notoriously difficult because evaluating the likelihood exactly is intractable. One way to address this challenge is to first build a non-negative and unbiased estimate of the likelihood -- involving the matrix exponential of finite truncations of the true rate matrix -- and then to use the estimates in a pseudo-marginal inference method. In this work, we show that we can dramatically increase the efficiency of this approach by avoiding the computation of exact matrix exponentials. In particular, we develop a general methodology for constructing an unbiased, non-negative estimate of the likelihood using doubly-monotone matrix exponential approximations. We further develop a novel approximation in this family -- the skeletoid -- as well as theory regarding its approximation error and how that relates to the variance of the estimates used in pseudo-marginal inference. Experimental results show that our approach yields more efficient posterior inference for a wide variety of CTMCs.

View on arXiv
Comments on this paper