ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.13607
17
4

Alleviating the Knowledge-Language Inconsistency: A Study for Deep Commonsense Knowledge

28 May 2021
Yi Zhang
Lei Li
Yunfang Wu
Qi Su
Xu Sun
ArXivPDFHTML
Abstract

Knowledge facts are typically represented by relational triples, while we observe that some commonsense facts are represented by the triples whose forms are inconsistent with the expression of language. This inconsistency puts forward a challenge for pre-trained language models to deal with these commonsense knowledge facts. In this paper, we term such knowledge as deep commonsense knowledge and conduct extensive exploratory experiments on it. We show that deep commonsense knowledge occupies a significant part of commonsense knowledge while conventional methods fail to capture it effectively. We further propose a novel method to mine the deep commonsense knowledge distributed in sentences, alleviating the reliance of conventional methods on the triple representation form of knowledge. Experiments demonstrate that the proposal significantly improves the performance in mining deep commonsense knowledge.

View on arXiv
Comments on this paper