ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2105.14540
6
15

Attention Based Semantic Segmentation on UAV Dataset for Natural Disaster Damage Assessment

30 May 2021
Tashnim Chowdhury
Maryam Rahnemoonfar
ArXivPDFHTML
Abstract

The detrimental impacts of climate change include stronger and more destructive hurricanes happening all over the world. Identifying different damaged structures of an area including buildings and roads are vital since it helps the rescue team to plan their efforts to minimize the damage caused by a natural disaster. Semantic segmentation helps to identify different parts of an image. We implement a novel self-attention based semantic segmentation model on a high resolution UAV dataset and attain Mean IoU score of around 88% on the test set. The result inspires to use self-attention schemes in natural disaster damage assessment which will save human lives and reduce economic losses.

View on arXiv
Comments on this paper