ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.01424
11
9

Learning to Select: A Fully Attentive Approach for Novel Object Captioning

2 June 2021
Marco Cagrandi
Marcella Cornia
Matteo Stefanini
Lorenzo Baraldi
Rita Cucchiara
ArXivPDFHTML
Abstract

Image captioning models have lately shown impressive results when applied to standard datasets. Switching to real-life scenarios, however, constitutes a challenge due to the larger variety of visual concepts which are not covered in existing training sets. For this reason, novel object captioning (NOC) has recently emerged as a paradigm to test captioning models on objects which are unseen during the training phase. In this paper, we present a novel approach for NOC that learns to select the most relevant objects of an image, regardless of their adherence to the training set, and to constrain the generative process of a language model accordingly. Our architecture is fully-attentive and end-to-end trainable, also when incorporating constraints. We perform experiments on the held-out COCO dataset, where we demonstrate improvements over the state of the art, both in terms of adaptability to novel objects and caption quality.

View on arXiv
Comments on this paper