ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.01686
15
61

AliCG: Fine-grained and Evolvable Conceptual Graph Construction for Semantic Search at Alibaba

3 June 2021
Ningyu Zhang
Qianghuai Jia
Shumin Deng
Xiang Chen
Hongbin Ye
Hui Chen
Huaixiao Tou
Gang Huang
Zhao Wang
Nengwei Hua
Huajun Chen
ArXivPDFHTML
Abstract

Conceptual graphs, which is a particular type of Knowledge Graphs, play an essential role in semantic search. Prior conceptual graph construction approaches typically extract high-frequent, coarse-grained, and time-invariant concepts from formal texts. In real applications, however, it is necessary to extract less-frequent, fine-grained, and time-varying conceptual knowledge and build taxonomy in an evolving manner. In this paper, we introduce an approach to implementing and deploying the conceptual graph at Alibaba. Specifically, We propose a framework called AliCG which is capable of a) extracting fine-grained concepts by a novel bootstrapping with alignment consensus approach, b) mining long-tail concepts with a novel low-resource phrase mining approach, c) updating the graph dynamically via a concept distribution estimation method based on implicit and explicit user behaviors. We have deployed the framework at Alibaba UC Browser. Extensive offline evaluation as well as online A/B testing demonstrate the efficacy of our approach.

View on arXiv
Comments on this paper