ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02435
24
22

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient

4 June 2021
Shaokun Zhang
Xiawu Zheng
Chenyi Yang
Yuchao Li
Yan Wang
Fei Chao
Mengdi Wang
Shen Li
Jun Yang
Rongrong Ji
    MQ
ArXivPDFHTML
Abstract

Despite superior performance on various natural language processing tasks, pre-trained models such as BERT are challenged by deploying on resource-constraint devices. Most existing model compression approaches require re-compression or fine-tuning across diverse constraints to accommodate various hardware deployments. This practically limits the further application of model compression. Moreover, the ineffective training and searching process of existing elastic compression paradigms[4,27] prevents the direct migration to BERT compression. Motivated by the necessity of efficient inference across various constraints on BERT, we propose a novel approach, YOCO-BERT, to achieve compress once and deploy everywhere. Specifically, we first construct a huge search space with 10^13 architectures, which covers nearly all configurations in BERT model. Then, we propose a novel stochastic nature gradient optimization method to guide the generation of optimal candidate architecture which could keep a balanced trade-off between explorations and exploitation. When a certain resource constraint is given, a lightweight distribution optimization approach is utilized to obtain the optimal network for target deployment without fine-tuning. Compared with state-of-the-art algorithms, YOCO-BERT provides more compact models, yet achieving 2.1%-4.5% average accuracy improvement on the GLUE benchmark. Besides, YOCO-BERT is also more effective, e.g.,the training complexity is O(1)for N different devices. Code is availablehttps://github.com/MAC-AutoML/YOCO-BERT.

View on arXiv
Comments on this paper