ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02779
63
2

PEEL: A Provable Removal Attack on Deep Hiding

5 June 2021
Tao Xiang
Hangcheng Liu
Shangwei Guo
Tianwei Zhang
ArXiv (abs)PDFHTML
Abstract

Deep hiding, embedding images into another using deep neural networks, has shown its great power in increasing the message capacity and robustness. In this paper, we conduct an in-depth study of state-of-the-art deep hiding schemes and analyze their hidden vulnerabilities. Then, according to our observations and analysis, we propose a novel ProvablE rEmovaL attack (PEEL) using image inpainting to remove secret images from containers without any prior knowledge about the deep hiding scheme. We also propose a systemic methodology to improve the efficiency and image quality of PEEL by carefully designing a removal strategy and fully utilizing the visual information of containers. Extensive evaluations show our attacks can completely remove secret images and has negligible impact on the quality of containers.

View on arXiv
Comments on this paper