ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.02885
10
128

Category Contrast for Unsupervised Domain Adaptation in Visual Tasks

5 June 2021
Jiaxing Huang
Dayan Guan
Aoran Xiao
Shijian Lu
Ling Shao
    CML
ArXivPDFHTML
Abstract

Instance contrast for unsupervised representation learning has achieved great success in recent years. In this work, we explore the idea of instance contrastive learning in unsupervised domain adaptation (UDA) and propose a novel Category Contrast technique (CaCo) that introduces semantic priors on top of instance discrimination for visual UDA tasks. By considering instance contrastive learning as a dictionary look-up operation, we construct a semantics-aware dictionary with samples from both source and target domains where each target sample is assigned a (pseudo) category label based on the category priors of source samples. This allows category contrastive learning (between target queries and the category-level dictionary) for category-discriminative yet domain-invariant feature representations: samples of the same category (from either source or target domain) are pulled closer while those of different categories are pushed apart simultaneously. Extensive UDA experiments in multiple visual tasks (e.g., segmentation, classification and detection) show that CaCo achieves superior performance as compared with state-of-the-art methods. The experiments also demonstrate that CaCo is complementary to existing UDA methods and generalizable to other learning setups such as unsupervised model adaptation, open-/partial-set adaptation etc.

View on arXiv
Comments on this paper