ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.03065
173
4
v1v2 (latest)

Semantic-Enhanced Explainable Finetuning for Open-Domain Dialogues

6 June 2021
Yinhe Zheng
Yida Wang
Pei Ke
Zhenyu Yang
Shiyu Huang
ArXiv (abs)PDFHTML
Abstract

In this paper, we propose to combine pretrained language models with the modular dialogue paradigm for open-domain dialogue modeling. Our method, semantic-enhanced finetuning, instantiates conversation understanding, planning, and response generation as a language model finetuning task. At inference, we disentangle semantic and token variations by specifying sampling methods and constraints for each module separately. For training and evaluation, we present X-Weibo, a Chinese multi-turn open-domain dialogue dataset with automatic annotation for emotions, DAs, and topical words. Experiments show that semantic-enhanced finetuning outperforms strong baselines on non-semantic and semantic metrics, improves the human-evaluated relevance, coherence, and informativeness, and exhibits considerable controllability over semantic variables.

View on arXiv
Comments on this paper