ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05397
13
5

From inexact optimization to learning via gradient concentration

9 June 2021
Bernhard Stankewitz
Nicole Mücke
Lorenzo Rosasco
ArXivPDFHTML
Abstract

Optimization in machine learning typically deals with the minimization of empirical objectives defined by training data. However, the ultimate goal of learning is to minimize the error on future data (test error), for which the training data provides only partial information. In this view, the optimization problems that are practically feasible are based on inexact quantities that are stochastic in nature. In this paper, we show how probabilistic results, specifically gradient concentration, can be combined with results from inexact optimization to derive sharp test error guarantees. By considering unconstrained objectives we highlight the implicit regularization properties of optimization for learning.

View on arXiv
Comments on this paper