ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05658
11
4

Conditional COT-GAN for Video Prediction with Kernel Smoothing

10 June 2021
Tianlin Xu
Beatrice Acciaio
    GAN
    AI4TS
    CML
ArXivPDFHTML
Abstract

Causal Optimal Transport (COT) results from imposing a temporal causality constraint on classic optimal transport problems, which naturally generates a new concept of distances between distributions on path spaces. The first application of the COT theory for sequential learning was given in Xu et al. (2020), where COT-GAN was introduced as an adversarial algorithm to train implicit generative models optimized for producing sequential data. Relying on (Xu et al., 2020), the contribution of the present paper is twofold. First, we develop a conditional version of COT-GAN suitable for sequence prediction. This means that the dataset is now used in order to learn how a sequence will evolve given the observation of its past evolution. Second, we improve on the convergence results by working with modifications of the empirical measures via kernel smoothing due to (Pflug and Pichler (2016)). The resulting kernel conditional COT-GAN algorithm is illustrated with an application for video prediction.

View on arXiv
Comments on this paper