ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.05844
6
9

SemSegLoss: A python package of loss functions for semantic segmentation

18 May 2021
Shruti Jadon
    SSeg
    VLM
ArXivPDFHTML
Abstract

Image Segmentation has been an active field of research as it has a wide range of applications, ranging from automated disease detection to self-driving cars. In recent years, various research papers proposed different loss functions used in case of biased data, sparse segmentation, and unbalanced dataset. In this paper, we introduce SemSegLoss, a python package consisting of some of the well-known loss functions widely used for image segmentation. It is developed with the intent to help researchers in the development of novel loss functions and perform an extensive set of experiments on model architectures for various applications. The ease-of-use and flexibility of the presented package have allowed reducing the development time and increased evaluation strategies of machine learning models for semantic segmentation. Furthermore, different applications that use image segmentation can use SemSegLoss because of the generality of its functions. This wide range of applications will lead to the development and growth of AI across all industries.

View on arXiv
Comments on this paper