ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.06418
  4. Cited By
Scale-invariant scale-channel networks: Deep networks that generalise to
  previously unseen scales
v1v2 (latest)

Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales

Journal of Mathematical Imaging and Vision (JMIV), 2021
11 June 2021
Ylva Jansson
T. Lindeberg
ArXiv (abs)PDFHTML

Papers citing "Scale-invariant scale-channel networks: Deep networks that generalise to previously unseen scales"

15 / 15 papers shown
Title
Hybrid Lie semi-group and cascade structures for the generalized Gaussian derivative model for visual receptive fields
Hybrid Lie semi-group and cascade structures for the generalized Gaussian derivative model for visual receptive fields
Tony Lindeberg
21
1
0
19 Sep 2025
Graph Lineages and Skeletal Graph Products
Graph Lineages and Skeletal Graph Products
Eric Mjolsness
Cory Braker Scott
AI4CE
75
0
0
31 Jul 2025
GERD: Geometric event response data generation
GERD: Geometric event response data generation
Jens Egholm Pedersen
Dimitris Korakovounis
Jorg Conradt
VGen
197
1
0
04 Dec 2024
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variations
Scale generalisation properties of extended scale-covariant and scale-invariant Gaussian derivative networks on image datasets with spatial scaling variationsJournal of Mathematical Imaging and Vision (JMIV), 2024
Andrzej Perzanowski
Tony Lindeberg
238
4
0
17 Sep 2024
Unified theory for joint covariance properties under geometric image
  transformations for spatio-temporal receptive fields according to the
  generalized Gaussian derivative model for visual receptive fields
Unified theory for joint covariance properties under geometric image transformations for spatio-temporal receptive fields according to the generalized Gaussian derivative model for visual receptive fields
Tony Lindeberg
172
9
0
17 Nov 2023
Advancing Perception in Artificial Intelligence through Principles of
  Cognitive Science
Advancing Perception in Artificial Intelligence through Principles of Cognitive Science
Palaash Agrawal
Cheston Tan
Heena Rathore
144
2
0
13 Oct 2023
SRMAE: Masked Image Modeling for Scale-Invariant Deep Representations
SRMAE: Masked Image Modeling for Scale-Invariant Deep RepresentationsChinese Conference on Pattern Recognition and Computer Vision (CPRCV), 2023
Zhiming Wang
Lin Gu
Feng Lu
134
1
0
17 Aug 2023
Riesz feature representation: scale equivariant scattering network for
  classification tasks
Riesz feature representation: scale equivariant scattering network for classification tasksSIAM Journal of Imaging Sciences (JSIS), 2023
Tin Barisin
Jesús Angulo
K. Schladitz
C. Redenbach
161
3
0
17 Jul 2023
Riesz networks: scale invariant neural networks in a single forward pass
Riesz networks: scale invariant neural networks in a single forward passJournal of Mathematical Imaging and Vision (JMIV), 2023
Tin Barisin
K. Schladitz
C. Redenbach
117
13
0
08 May 2023
Scale-Equivariant Deep Learning for 3D Data
Scale-Equivariant Deep Learning for 3D Data
Thomas Wimmer
Vladimir Golkov
H. Dang
Moritz Zaiss
Andreas Maier
Zorah Lähner
3DPCMedIm
131
7
0
12 Apr 2023
Covariance properties under natural image transformations for the
  generalized Gaussian derivative model for visual receptive fields
Covariance properties under natural image transformations for the generalized Gaussian derivative model for visual receptive fieldsFrontiers in Computational Neuroscience (Front. Comput. Neurosci.), 2023
T. Lindeberg
235
16
0
17 Mar 2023
Just a Matter of Scale? Reevaluating Scale Equivariance in Convolutional
  Neural Networks
Just a Matter of Scale? Reevaluating Scale Equivariance in Convolutional Neural NetworksIEEE International Joint Conference on Neural Network (IJCNN), 2022
Thomas Altstidl
A. Nguyen
Leo Schwinn
Franz Koferl
Christopher Mutschler
Björn Eskofier
Dario Zanca
153
2
0
18 Nov 2022
DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection
DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object DetectionEuropean Conference on Computer Vision (ECCV), 2022
Abhinav Kumar
Garrick Brazil
E. Corona
Armin Parchami
Xiaoming Liu
3DPCMDE
140
66
0
21 Jul 2022
Resource-Efficient Invariant Networks: Exponential Gains by Unrolled
  Optimization
Resource-Efficient Invariant Networks: Exponential Gains by Unrolled Optimization
Sam Buchanan
Jingkai Yan
Ellie Haber
John N. Wright
149
3
0
09 Mar 2022
DeepSITH: Efficient Learning via Decomposition of What and When Across
  Time Scales
DeepSITH: Efficient Learning via Decomposition of What and When Across Time ScalesNeural Information Processing Systems (NeurIPS), 2021
Brandon G. Jacques
Zoran Tiganj
Marc W Howard
P. Sederberg
73
8
0
09 Apr 2021
1