ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07329
25
39

On-Policy Deep Reinforcement Learning for the Average-Reward Criterion

14 June 2021
Yiming Zhang
Keith Ross
    OffRL
ArXivPDFHTML
Abstract

We develop theory and algorithms for average-reward on-policy Reinforcement Learning (RL). We first consider bounding the difference of the long-term average reward for two policies. We show that previous work based on the discounted return (Schulman et al., 2015; Achiam et al., 2017) results in a non-meaningful bound in the average-reward setting. By addressing the average-reward criterion directly, we then derive a novel bound which depends on the average divergence between the two policies and Kemeny's constant. Based on this bound, we develop an iterative procedure which produces a sequence of monotonically improved policies for the average reward criterion. This iterative procedure can then be combined with classic DRL (Deep Reinforcement Learning) methods, resulting in practical DRL algorithms that target the long-run average reward criterion. In particular, we demonstrate that Average-Reward TRPO (ATRPO), which adapts the on-policy TRPO algorithm to the average-reward criterion, significantly outperforms TRPO in the most challenging MuJuCo environments.

View on arXiv
Comments on this paper