ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07720
23
3

Incorporating Domain Knowledge into Health Recommender Systems using Hyperbolic Embeddings

14 June 2021
Joel Peito
Qiwei Han
ArXiv (abs)PDFHTML
Abstract

In contrast to many other domains, recommender systems in health services may benefit particularly from the incorporation of health domain knowledge, as it helps to provide meaningful and personalised recommendations catering to the individual's health needs. With recent advances in representation learning enabling the hierarchical embedding of health knowledge into the hyperbolic Poincare space, this work proposes a content-based recommender system for patient-doctor matchmaking in primary care based on patients' health profiles, enriched by pre-trained Poincare embeddings of the ICD-9 codes through transfer learning. The proposed model outperforms its conventional counterpart in terms of recommendation accuracy and has several important business implications for improving the patient-doctor relationship.

View on arXiv
Comments on this paper