10
4

Unique sparse decomposition of low rank matrices

Abstract

The problem of finding the unique low dimensional decomposition of a given matrix has been a fundamental and recurrent problem in many areas. In this paper, we study the problem of seeking a unique decomposition of a low rank matrix YRp×nY\in \mathbb{R}^{p\times n} that admits a sparse representation. Specifically, we consider Y=AXRp×nY = A X\in \mathbb{R}^{p\times n} where the matrix ARp×rA\in \mathbb{R}^{p\times r} has full column rank, with r<min{n,p}r < \min\{n,p\}, and the matrix XRr×nX\in \mathbb{R}^{r\times n} is element-wise sparse. We prove that this sparse decomposition of YY can be uniquely identified, up to some intrinsic signed permutation. Our approach relies on solving a nonconvex optimization problem constrained over the unit sphere. Our geometric analysis for the nonconvex optimization landscape shows that any {\em strict} local solution is close to the ground truth solution, and can be recovered by a simple data-driven initialization followed with any second order descent algorithm. At last, we corroborate these theoretical results with numerical experiments.

View on arXiv
Comments on this paper