ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.07898
8
14

Divergence Frontiers for Generative Models: Sample Complexity, Quantization Effects, and Frontier Integrals

15 June 2021
Lang Liu
Krishna Pillutla
Sean Welleck
Sewoong Oh
Yejin Choi
Zaïd Harchaoui
    MQ
ArXivPDFHTML
Abstract

The spectacular success of deep generative models calls for quantitative tools to measure their statistical performance. Divergence frontiers have recently been proposed as an evaluation framework for generative models, due to their ability to measure the quality-diversity trade-off inherent to deep generative modeling. We establish non-asymptotic bounds on the sample complexity of divergence frontiers. We also introduce frontier integrals which provide summary statistics of divergence frontiers. We show how smoothed estimators such as Good-Turing or Krichevsky-Trofimov can overcome the missing mass problem and lead to faster rates of convergence. We illustrate the theoretical results with numerical examples from natural language processing and computer vision.

View on arXiv
Comments on this paper