ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.08694
289
63
v1v2 (latest)

On the proper role of linguistically-oriented deep net analysis in linguistic theorizing

16 June 2021
Marco Baroni
ArXiv (abs)PDFHTML
Abstract

A lively research field has recently emerged that uses experimental methods to probe the linguistic behavior of modern deep networks. While work in this tradition often reports intriguing results about the grammatical skills of deep nets, it is not clear what their implications for linguistic theorizing should be. As a consequence, linguistically-oriented deep net analysis has had very little impact on linguistics at large. In this chapter, I suggest that deep networks should be treated as theories making explicit predictions about the acceptability of linguistic utterances. I argue that, if we overcome some obstacles standing in the way of seriously pursuing this idea, we will gain a powerful new theoretical tool, complementary to mainstream algebraic approaches.

View on arXiv
Comments on this paper