ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.08756
14
0

Optimizing Data Augmentation Policy Through Random Unidimensional Search

16 June 2021
Xiaomeng Dong
Michael Potter
Gaurav Kumar
Yun-Chan Tsai
V. R. Saripalli
Theodore Trafalis
ArXivPDFHTML
Abstract

It is no secret amongst deep learning researchers that finding the optimal data augmentation strategy during training can mean the difference between state-of-the-art performance and a run-of-the-mill result. To that end, the community has seen many efforts to automate the process of finding the perfect augmentation procedure for any task at hand. Unfortunately, even recent cutting-edge methods bring massive computational overhead, requiring as many as 100 full model trainings to settle on an ideal configuration. We show how to achieve equivalent performance using just 6 trainings with Random Unidimensional Augmentation. Source code is available at https://github.com/fastestimator/RUA/tree/v1.0

View on arXiv
Comments on this paper