ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.09325
16
4

Central Kurdish machine translation: First large scale parallel corpus and experiments

17 June 2021
Zhila Amini
Mohammad MohammadAmini
Hawre Hosseini
Mehran Mansouri
Daban Q. Jaff
ArXivPDFHTML
Abstract

While the computational processing of Kurdish has experienced a relative increase, the machine translation of this language seems to be lacking a considerable body of scientific work. This is in part due to the lack of resources especially curated for this task. In this paper, we present the first large scale parallel corpus of Central Kurdish-English, Awta, containing 229,222 pairs of manually aligned translations. Our corpus is collected from different text genres and domains in an attempt to build more robust and real-world applications of machine translation. We make a portion of this corpus publicly available in order to foster research in this area. Further, we build several neural machine translation models in order to benchmark the task of Kurdish machine translation. Additionally, we perform extensive experimental analysis of results in order to identify the major challenges that Central Kurdish machine translation faces. These challenges include language-dependent and-independent ones as categorized in this paper, the first group of which are aware of Central Kurdish linguistic properties on different morphological, syntactic and semantic levels. Our best performing systems achieve 22.72 and 16.81 in BLEU score for Ku→\rightarrow→EN and En→\rightarrow→Ku, respectively.

View on arXiv
Comments on this paper