ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.10135
25
0

CLT for LSS of sample covariance matrices with unbounded dispersions

18 June 2021
Liu Zhijun
Bai Zhidong
Hu Jiang
Song Haiyan
ArXiv (abs)PDFHTML
Abstract

Under the high-dimensional setting that data dimension and sample size tend to infinity proportionally, we derive the central limit theorem (CLT) for linear spectral statistics (LSS) of large-dimensional sample covariance matrix. Different from existing literature, our results do not require the assumption that the population covariance matrices are bounded. Moreover, many common kernel functions in the real data such as logarithmic functions and polynomial functions are allowed in this paper. In our model, the number of spiked eigenvalues can be fixed or tend to infinity. One salient feature of the asymptotic mean and covariance in our proposed central limit theorem is that it is related to the divergence order of the population spectral norm.

View on arXiv
Comments on this paper