ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.10476
14
10

Neural network interpretability for forecasting of aggregated renewable generation

19 June 2021
Y. Lu
Ilgiz Murzakhanov
Spyros Chatzivasileiadis
ArXivPDFHTML
Abstract

With the rapid growth of renewable energy, lots of small photovoltaic (PV) prosumers emerge. Due to the uncertainty of solar power generation, there is a need for aggregated prosumers to predict solar power generation and whether solar power generation will be larger than load. This paper presents two interpretable neural networks to solve the problem: one binary classification neural network and one regression neural network. The neural networks are built using TensorFlow. The global feature importance and local feature contributions are examined by three gradient-based methods: Integrated Gradients, Expected Gradients, and DeepLIFT. Moreover, we detect abnormal cases when predictions might fail by estimating the prediction uncertainty using Bayesian neural networks. Neural networks, which are interpreted by gradient-based methods and complemented with uncertainty estimation, provide robust and explainable forecasting for decision-makers.

View on arXiv
Comments on this paper