ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.10506
15
32

Exploring Visual Context for Weakly Supervised Person Search

19 June 2021
Yichao Yan
Jinpeng Li
Shengcai Liao
Jie Qin
Bingbing Ni
Xiaokang Yang
Ling Shao
ArXivPDFHTML
Abstract

Person search has recently emerged as a challenging task that jointly addresses pedestrian detection and person re-identification. Existing approaches follow a fully supervised setting where both bounding box and identity annotations are available. However, annotating identities is labor-intensive, limiting the practicability and scalability of current frameworks. This paper inventively considers weakly supervised person search with only bounding box annotations. We proposed to address this novel task by investigating three levels of context clues (i.e., detection, memory and scene) in unconstrained natural images. The first two are employed to promote local and global discriminative capabilities, while the latter enhances clustering accuracy. Despite its simple design, our CGPS achieves 80.0% in mAP on CUHK-SYSU, boosting the baseline model by 8.8%. Surprisingly, it even achieves comparable performance with several supervised person search models. Our code is available at https://github.com/ljpadam/CGPS

View on arXiv
Comments on this paper