ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.10753
11
0

Opportunities and challenges in partitioning the graph measure space of real-world networks

20 June 2021
Máté Józsa
Alpár S. Lázár
Zs.I. Lázár
ArXivPDFHTML
Abstract

Based on a large dataset containing thousands of real-world networks ranging from genetic, protein interaction, and metabolic networks to brain, language, ecology, and social networks we search for defining structural measures of the different complex network domains (CND). We calculate 208 measures for all networks and using a comprehensive and scrupulous workflow of statistical and machine learning methods we investigated the limitations and possibilities of identifying the key graph measures of CNDs. Our approach managed to identify well distinguishable groups of network domains and confer their relevant features. These features turn out to be CND specific and not unique even at the level of individual CNDs. The presented methodology may be applied to other similar scenarios involving highly unbalanced and skewed datasets.

View on arXiv
Comments on this paper