ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.10880
19
28

Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity

21 June 2021
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
ArXivPDFHTML
Abstract

Sampling from probability distributions is an important problem in statistics and machine learning, specially in Bayesian inference when integration with respect to posterior distribution is intractable and sampling from the posterior is the only viable option for inference. In this paper, we propose Schr\"{o}dinger-F\"{o}llmer sampler (SFS), a novel approach for sampling from possibly unnormalized distributions. The proposed SFS is based on the Schr\"{o}dinger-F\"{o}llmer diffusion process on the unit interval with a time dependent drift term, which transports the degenerate distribution at time zero to the target distribution at time one. Comparing with the existing Markov chain Monte Carlo samplers that require ergodicity, no such requirement is needed for SFS. Computationally, SFS can be easily implemented using the Euler-Maruyama discretization. In theoretical analysis, we establish non-asymptotic error bounds for the sampling distribution of SFS in the Wasserstein distance under suitable conditions. We conduct numerical experiments to evaluate the performance of SFS and demonstrate that it is able to generate samples with better quality than several existing methods.

View on arXiv
Comments on this paper