ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.10923
20
0

Unsupervised Deep Learning by Injecting Low-Rank and Sparse Priors

21 June 2021
T. Sakai
    SSL
ArXivPDFHTML
Abstract

What if deep neural networks can learn from sparsity-inducing priors? When the networks are designed by combining layer modules (CNN, RNN, etc), engineers less exploit the inductive bias, i.e., existing well-known rules or prior knowledge, other than annotated training data sets. We focus on employing sparsity-inducing priors in deep learning to encourage the network to concisely capture the nature of high-dimensional data in an unsupervised way. In order to use non-differentiable sparsity-inducing norms as loss functions, we plug their proximal mappings into the automatic differentiation framework. We demonstrate unsupervised learning of U-Net for background subtraction using low-rank and sparse priors. The U-Net can learn moving objects in a training sequence without any annotation, and successfully detect the foreground objects in test sequences.

View on arXiv
Comments on this paper