214

Enhanced Separable Disentanglement for Unsupervised Domain Adaptation

International Conference on Information Photonics (ICIP), 2021
Abstract

Domain adaptation aims to mitigate the domain gap when transferring knowledge from an existing labeled domain to a new domain. However, existing disentanglement-based methods do not fully consider separation between domain-invariant and domain-specific features, which means the domain-invariant features are not discriminative. The reconstructed features are also not sufficiently used during training. In this paper, we propose a novel enhanced separable disentanglement (ESD) model. We first employ a disentangler to distill domain-invariant and domain-specific features. Then, we apply feature separation enhancement processes to minimize contamination between domain-invariant and domain-specific features. Finally, our model reconstructs complete feature vectors, which are used for further disentanglement during the training phase. Extensive experiments from three benchmark datasets outperform state-of-the-art methods, especially on challenging cross-domain tasks.

View on arXiv
Comments on this paper