ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.12639
11
23

Multi-objective Asynchronous Successive Halving

23 June 2021
Robin Schmucker
Michele Donini
Muhammad Bilal Zafar
David Salinas
Cédric Archambeau
ArXivPDFHTML
Abstract

Hyperparameter optimization (HPO) is increasingly used to automatically tune the predictive performance (e.g., accuracy) of machine learning models. However, in a plethora of real-world applications, accuracy is only one of the multiple -- often conflicting -- performance criteria, necessitating the adoption of a multi-objective (MO) perspective. While the literature on MO optimization is rich, few prior studies have focused on HPO. In this paper, we propose algorithms that extend asynchronous successive halving (ASHA) to the MO setting. Considering multiple evaluation metrics, we assess the performance of these methods on three real world tasks: (i) Neural architecture search, (ii) algorithmic fairness and (iii) language model optimization. Our empirical analysis shows that MO ASHA enables to perform MO HPO at scale. Further, we observe that that taking the entire Pareto front into account for candidate selection consistently outperforms multi-fidelity HPO based on MO scalarization in terms of wall-clock time. Our algorithms (to be open-sourced) establish new baselines for future research in the area.

View on arXiv
Comments on this paper