ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.12773
14
11

Evaluation of Saliency-based Explainability Method

24 June 2021
Sam Zabdiel Sunder Samuel
V. Kamakshi
Namrata Lodhi
N. C. Krishnan
    FAtt
    XAI
ArXivPDFHTML
Abstract

A particular class of Explainable AI (XAI) methods provide saliency maps to highlight part of the image a Convolutional Neural Network (CNN) model looks at to classify the image as a way to explain its working. These methods provide an intuitive way for users to understand predictions made by CNNs. Other than quantitative computational tests, the vast majority of evidence to highlight that the methods are valuable is anecdotal. Given that humans would be the end-users of such methods, we devise three human subject experiments through which we gauge the effectiveness of these saliency-based explainability methods.

View on arXiv
Comments on this paper