Depth completion aims to generate a dense depth map from the sparse depth map
and aligned RGB image. However, current depth completion methods use extremely
expensive 64-line LiDAR(about 100,000)toobtainsparsedepthmaps,whichwilllimittheirapplicationscenarios.Comparedwiththe64−lineLiDAR,thesingle−lineLiDARismuchlessexpensiveandmuchmorerobust.Therefore,weproposeamethodtotackletheproblemofsingle−linedepthcompletion,inwhichweaimtogenerateadensedepthmapfromthesingle−lineLiDARinfoandthealignedRGBimage.Asingle−linedepthcompletiondatasetisproposedbasedontheexisting64−linedepthcompletiondataset(KITTI).AnetworkcalledSemanticGuidedTwo−BranchNetwork(SGTBN)whichcontainsglobalandlocalbranchestoextractandfuseglobalandlocalinfoisproposedforthistask.ASemanticguideddepthupsamplingmoduleisusedinournetworktomakefulluseofthesemanticinfoinRGBimages.ExceptfortheusualMSEloss,weaddthevirtualnormallosstoincreasetheconstraintofhigh−order3Dgeometryinournetwork.Ournetworkoutperformsthestate−of−the−artinthesingle−linedepthcompletiontask.Besides,comparedwiththemonoculardepthestimation,ourmethodalsohassignificantadvantagesinprecisionandmodelsize.