ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.13694
45
3
v1v2v3v4 (latest)

Posterior Covariance Information Criterion for Weighted Inference

25 June 2021
Y. Iba
Keisuke Yano
ArXiv (abs)PDFHTML
Abstract

For predictive evaluation based on quasi-posterior distributions, we develop a new information criterion, the posterior covariance information criterion (PCIC. PCIC generalises the widely applicable information criterion WAIC so as to effectively handle predictive scenarios where likelihoods for the estimation and the evaluation of the model may be different. A typical example of such scenarios is the weighted likelihood inference, including prediction under covariate shift and counterfactual prediction. The proposed criterion utilises a posterior covariance form and is computed by using only one Markov chain Monte Carlo run. Through numerical examples, we demonstrate how PCIC can apply in practice. Further, we show that PCIC is asymptotically unbiased to the quasi-Bayesian generalization error under mild conditions in weighted inference with both regular and singular statistical models.

View on arXiv
Comments on this paper