335

K-Net: Towards Unified Image Segmentation

Neural Information Processing Systems (NeurIPS), 2021
Abstract

Semantic, instance, and panoptic segmentations have been addressed using different and specialized frameworks despite their underlying connections. This paper presents a unified, simple, and effective framework for these essentially similar tasks. The framework, named K-Net, segments both instances and semantic categories consistently by a group of learnable kernels, where each kernel is responsible for generating a mask for either a potential instance or a stuff class. To remedy the difficulties of distinguishing various instances, we propose a kernel update strategy that enables each kernel dynamic and conditional on its meaningful group in the input image. K-Net can be trained in an end-to-end manner with bipartite matching, and its training and inference are naturally NMS-free and box-free. Without bells and whistles, K-Net surpasses all previous state-of-the-art single-model results of panoptic segmentation on MS COCO and semantic segmentation on ADE20K with 52.1% PQ and 54.3% mIoU, respectively. Its instance segmentation performance is also on par with Cascade Mask R-CNNon MS COCO with 60%-90% faster inference speeds. Code and models will be released at https://github.com/open-mmlab/mmdetection.

View on arXiv
Comments on this paper