ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2106.15713
16
35

Legged Robot State Estimation using Invariant Kalman Filtering and Learned Contact Events

29 June 2021
Tzu-Yuan Lin
Ray Zhang
Justin Yu
Maani Ghaffari
ArXivPDFHTML
Abstract

This work develops a learning-based contact estimator for legged robots that bypasses the need for physical sensors and takes multi-modal proprioceptive sensory data as input. Unlike vision-based state estimators, proprioceptive state estimators are agnostic to perceptually degraded situations such as dark or foggy scenes. While some robots are equipped with dedicated physical sensors to detect necessary contact data for state estimation, some robots do not have dedicated contact sensors, and the addition of such sensors is non-trivial without redesigning the hardware. The trained network can estimate contact events on different terrains. The experiments show that a contact-aided invariant extended Kalman filter can generate accurate odometry trajectories compared to a state-of-the-art visual SLAM system, enabling robust proprioceptive odometry.

View on arXiv
Comments on this paper