ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.00470
41
6

Dealing with overdispersion in multivariate count data

1 July 2021
N. Corsini
C. Viroli
ArXiv (abs)PDFHTML
Abstract

The problem of overdispersion in multivariate count data is a challenging issue. Nowadays, it covers a central role mainly due to the relevance of modern technologies data, such as Next Generation Sequencing and textual data from the web or digital collections. This work presents a comprehensive analysis of the likelihood-based models for extra-variation data proposed in the scientific literature. Particular attention will be paid to the models feasible for high-dimensional data. A new approach together with its parametric-estimation procedure is proposed. It is a deeper version of the Dirichlet-Multinomial distribution and it leads to important results allowing to get a better approximation of the observed variability. A significative comparison of these models is made through two different simulation studies that both confirm that the new model considered in this work allows to achieve the best results.

View on arXiv
Comments on this paper