ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.01202
22
14

Language Identification of Hindi-English tweets using code-mixed BERT

2 July 2021
M. Z. Ansari
M. Beg
Tanvir Ahmad
Mohd Jazib Khan
Ghazali Wasim
ArXivPDFHTML
Abstract

Language identification of social media text has been an interesting problem of study in recent years. Social media messages are predominantly in code mixed in non-English speaking states. Prior knowledge by pre-training contextual embeddings have shown state of the art results for a range of downstream tasks. Recently, models such as BERT have shown that using a large amount of unlabeled data, the pretrained language models are even more beneficial for learning common language representations. Extensive experiments exploiting transfer learning and fine-tuning BERT models to identify language on Twitter are presented in this paper. The work utilizes a data collection of Hindi-English-Urdu codemixed text for language pre-training and Hindi-English codemixed for subsequent word-level language classification. The results show that the representations pre-trained over codemixed data produce better results by their monolingual counterpart.

View on arXiv
Comments on this paper