ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.01352
97
8
v1v2v3 (latest)

Cleaning large-dimensional covariance matrices for correlated samples

3 July 2021
Z. Burda
A. Jarosz
ArXiv (abs)PDFHTML
Abstract

We elucidate the problem of estimating large-dimensional covariance matrices in the presence of correlations between samples. To this end, we generalize the Marcenko-Pastur equation and the Ledoit-Peche shrinkage estimator using methods of random matrix theory and free probability. We develop an efficient algorithm that implements the corresponding analytic formulas, based on the Ledoit-Wolf kernel estimation technique. We also provide an associated open-source Python library, called "shrinkage", with a user-friendly API to assist in practical tasks of estimation of large covariance matrices. We present an example of its usage for synthetic data generated according to exponentially-decaying auto-correlations.

View on arXiv
Comments on this paper