ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.02826
13
9

MPLP: Massively Parallelized Lazy Planning

6 July 2021
Shohin Mukherjee
S. Aine
Maxim Likhachev
ArXivPDFHTML
Abstract

Lazy search algorithms have been developed to efficiently solve planning problems in domains where the computational effort is dominated by the cost of edge evaluation. The existing algorithms operate by intelligently balancing computational effort between searching the graph and evaluating edges. However, they are designed to run as a single process and do not leverage the multithreading capability of modern processors. In this work, we propose a massively parallelized, bounded suboptimal, lazy search algorithm (MPLP) that harnesses modern multi-core processors. In MPLP, searching of the graph and edge evaluations are performed completely asynchronously in parallel, leading to a drastic improvement in planning time. We validate the proposed algorithm in two different planning domains: 1) motion planning for 3D humanoid navigation and 2) task and motion planning for a robotic assembly task. We show that MPLP outperforms the state-of-the-art lazy search as well as parallel search algorithms. The open-source code for MPLP is available here: https://github.com/shohinm/parallel_search

View on arXiv
Comments on this paper