ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.02955
9
4

Quadruped Locomotion on Non-Rigid Terrain using Reinforcement Learning

7 July 2021
Taehei Kim
Sung-Hee Lee
ArXivPDFHTML
Abstract

Legged robots need to be capable of walking on diverse terrain conditions. In this paper, we present a novel reinforcement learning framework for learning locomotion on non-rigid dynamic terrains. Specifically, our framework can generate quadruped locomotion on flat elastic terrain that consists of a matrix of tiles moving up and down passively when pushed by the robot's feet. A trained robot with 55cm base length can walk on terrain that can sink up to 5cm. We propose a set of observation and reward terms that enable this locomotion; in which we found that it is crucial to include the end-effector history and end-effector velocity terms into observation. We show the effectiveness of our method by training the robot with various terrain conditions.

View on arXiv
Comments on this paper