ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.03298
20
12

VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis

7 July 2021
Hui Lu
Zhiyong Wu
Xixin Wu
Xu Li
Shiyin Kang
Xunying Liu
H. Meng
ArXivPDFHTML
Abstract

This paper describes a variational auto-encoder based non-autoregressive text-to-speech (VAENAR-TTS) model. The autoregressive TTS (AR-TTS) models based on the sequence-to-sequence architecture can generate high-quality speech, but their sequential decoding process can be time-consuming. Recently, non-autoregressive TTS (NAR-TTS) models have been shown to be more efficient with the parallel decoding process. However, these NAR-TTS models rely on phoneme-level durations to generate a hard alignment between the text and the spectrogram. Obtaining duration labels, either through forced alignment or knowledge distillation, is cumbersome. Furthermore, hard alignment based on phoneme expansion can degrade the naturalness of the synthesized speech. In contrast, the proposed model of VAENAR-TTS is an end-to-end approach that does not require phoneme-level durations. The VAENAR-TTS model does not contain recurrent structures and is completely non-autoregressive in both the training and inference phases. Based on the VAE architecture, the alignment information is encoded in the latent variable, and attention-based soft alignment between the text and the latent variable is used in the decoder to reconstruct the spectrogram. Experiments show that VAENAR-TTS achieves state-of-the-art synthesis quality, while the synthesis speed is comparable with other NAR-TTS models.

View on arXiv
Comments on this paper