ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.04229
22
5

A Dual-Purpose Deep Learning Model for Auscultated Lung and Tracheal Sound Analysis Based on Mixed Set Training

9 July 2021
Fu-Shun Hsu
Shang-Ran Huang
Chang-Fu Su
Chien-Wen Huang
Yuan-Ren Cheng
Chun-Chieh Chen
Chunyue Wu
Chung-Wei Chen
Yen-Chun Lai
Tang-Wei Cheng
Nian-Jhen Lin
Wan-Ling Tsai
Ching-Shiang Lu
Chuan Chen
F. Lai
ArXivPDFHTML
Abstract

Many deep learning-based computerized respiratory sound analysis methods have previously been developed. However, these studies focus on either lung sound only or tracheal sound only. The effectiveness of using a lung sound analysis algorithm on tracheal sound and vice versa has never been investigated. Furthermore, no one knows whether using lung and tracheal sounds together in training a respiratory sound analysis model is beneficial. In this study, we first constructed a tracheal sound database, HF_Tracheal_V1, containing 10448 15-s tracheal sound recordings, 21741 inhalation labels, 15858 exhalation labels, and 6414 continuous adventitious sound (CAS) labels. HF_Tracheal_V1 and our previously built lung sound database, HF_Lung_V2, were either combined (mixed set), used one after the other (domain adaptation), or used alone to train convolutional neural network bidirectional gate recurrent unit models for inhalation, exhalation, and CAS detection in lung and tracheal sounds. The results revealed that the models trained using lung sound alone performed poorly in tracheal sound analysis and vice versa. However, mixed set training or domain adaptation improved the performance for 1) inhalation and exhalation detection in lung sounds and 2) inhalation, exhalation, and CAS detection in tracheal sounds compared to positive controls (the models trained using lung sound alone and used in lung sound analysis and vice versa). In particular, the model trained on the mixed set had great flexibility to serve two purposes, lung and tracheal sound analyses, at the same time.

View on arXiv
Comments on this paper