ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.04440
18
21

A Deep Discontinuity-Preserving Image Registration Network

9 July 2021
Xiang Chen
Nishant Ravikumar
Yan Xia
Alejandro F Frangi
    MedIm
ArXivPDFHTML
Abstract

Image registration aims to establish spatial correspondence across pairs, or groups of images, and is a cornerstone of medical image computing and computer-assisted-interventions. Currently, most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous, which is not always valid for real-world scenarios, especially in medical image registration (e.g. cardiac imaging and abdominal imaging). Such a global constraint can lead to artefacts and increased errors at discontinuous tissue interfaces. To tackle this issue, we propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR), to obtain better registration performance and realistic deformation fields. We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images from UK Biobank Imaging Study (UKBB), than state-of-the-art approaches.

View on arXiv
Comments on this paper