ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.06226
73
127

Pessimistic Model-based Offline Reinforcement Learning under Partial Coverage

13 July 2021
Masatoshi Uehara
Wen Sun
    OffRL
ArXivPDFHTML
Abstract

We study model-based offline Reinforcement Learning with general function approximation without a full coverage assumption on the offline data distribution. We present an algorithm named Constrained Pessimistic Policy Optimization (CPPO)which leverages a general function class and uses a constraint over the model class to encode pessimism. Under the assumption that the ground truth model belongs to our function class (i.e., realizability in the function class), CPPO has a PAC guarantee with offline data only providing partial coverage, i.e., it can learn a policy that competes against any policy that is covered by the offline data. We then demonstrate that this algorithmic framework can be applied to many specialized Markov Decision Processes where additional structural assumptions can further refine the concept of partial coverage. Two notable examples are: (1) low-rank MDP with representation learning where the partial coverage condition is defined using a relative condition number measured by the unknown ground truth feature representation; (2) factored MDP where the partial coverage condition is defined using density ratio based concentrability coefficients associated with individual factors.

View on arXiv
Comments on this paper