ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.06268
16
22

Smoothed Bernstein Online Aggregation for Day-Ahead Electricity Demand Forecasting

13 July 2021
F. Ziel
ArXivPDFHTML
Abstract

We present a winning method of the IEEE DataPort Competition on Day-Ahead Electricity Demand Forecasting: Post-COVID Paradigm. The day-ahead load forecasting approach is based on online forecast combination of multiple point prediction models. It contains four steps: i) data cleaning and preprocessing, ii) a holiday adjustment procedure, iii) training of individual forecasting models, iv) forecast combination by smoothed Bernstein Online Aggregation (BOA). The approach is flexible and can quickly adopt to new energy system situations as they occurred during and after COVID-19 shutdowns. The pool of individual prediction models ranges from rather simple time series models to sophisticated models like generalized additive models (GAMs) and high-dimensional linear models estimated by lasso. They incorporate autoregressive, calendar and weather effects efficiently. All steps contain novel concepts that contribute to the excellent forecasting performance of the proposed method. This holds particularly for the holiday adjustment procedure and the fully adaptive smoothed BOA approach.

View on arXiv
Comments on this paper