ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.06393
86
4

Hybrid Memoised Wake-Sleep: Approximate Inference at the Discrete-Continuous Interface

4 July 2021
T. Le
K. M. Collins
Luke B. Hewitt
Kevin Ellis
N. Siddharth
S. Gershman
J. Tenenbaum
ArXivPDFHTML
Abstract

Modeling complex phenomena typically involves the use of both discrete and continuous variables. Such a setting applies across a wide range of problems, from identifying trends in time-series data to performing effective compositional scene understanding in images. Here, we propose Hybrid Memoised Wake-Sleep (HMWS), an algorithm for effective inference in such hybrid discrete-continuous models. Prior approaches to learning suffer as they need to perform repeated expensive inner-loop discrete inference. We build on a recent approach, Memoised Wake-Sleep (MWS), which alleviates part of the problem by memoising discrete variables, and extend it to allow for a principled and effective way to handle continuous variables by learning a separate recognition model used for importance-sampling based approximate inference and marginalization. We evaluate HMWS in the GP-kernel learning and 3D scene understanding domains, and show that it outperforms current state-of-the-art inference methods.

View on arXiv
Comments on this paper