ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.06869
92
20

Core-set Sampling for Efficient Neural Architecture Search

8 July 2021
Jaewoong Shim
Kyeongbo Kong
Suk-Ju Kang
ArXivPDFHTML
Abstract

Neural architecture search (NAS), an important branch of automatic machine learning, has become an effective approach to automate the design of deep learning models. However, the major issue in NAS is how to reduce the large search time imposed by the heavy computational burden. While most recent approaches focus on pruning redundant sets or developing new search methodologies, this paper attempts to formulate the problem based on the data curation manner. Our key strategy is to search the architecture using summarized data distribution, i.e., core-set. Typically, many NAS algorithms separate searching and training stages, and the proposed core-set methodology is only used in search stage, thus their performance degradation can be minimized. In our experiments, we were able to save overall computational time from 30.8 hours to 3.5 hours, 8.8x reduction, on a single RTX 3090 GPU without sacrificing accuracy.

View on arXiv
Comments on this paper